派博傳思國際中心

標(biāo)題: Titlebook: The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ; John Guaschi,Daniel Juan-Pineda,Silv [打印本頁]

作者: Racket    時間: 2025-3-21 19:57
書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 影響因子(影響力)




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 影響因子(影響力)學(xué)科排名




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 網(wǎng)絡(luò)公開度




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 被引頻次




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 被引頻次學(xué)科排名




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 年度引用




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 年度引用學(xué)科排名




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 讀者反饋




書目名稱The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of 讀者反饋學(xué)科排名





作者: paragon    時間: 2025-3-21 23:34
Book 2018oups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results reveal new K-theoretical phenomena with respect to the previous study of other families of groups. The second part of the manuscript focusses on the
作者: jungle    時間: 2025-3-22 02:35
SpringerBriefs in Mathematicshttp://image.papertrans.cn/t/image/913335.jpg
作者: Buttress    時間: 2025-3-22 05:47
https://doi.org/10.1007/978-3-319-99489-520F36,19A31,19B28,14C35,18F25,13D15,16S3, 20C05, 20E45, 20G05; lower algebraic K-theory; surface braid
作者: 尖酸一點    時間: 2025-3-22 08:57
978-3-319-99488-8The Author(s), under exclusive license to Springer Nature Switzerland AG 2018
作者: 航海太平洋    時間: 2025-3-22 14:16

作者: 運動性    時間: 2025-3-22 20:45
John Guaschi,Daniel Juan-Pineda,Silvia Millán LópeIncludes many worked examples of K-theory computations for finite groups.A useful reference for researchers in K-theory, bringing together a broad array of techniques and references in one place, and
作者: DENT    時間: 2025-3-23 01:13

作者: 公社    時間: 2025-3-23 01:28

作者: arboretum    時間: 2025-3-23 07:43
The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of
作者: aptitude    時間: 2025-3-23 11:52
第4樓
作者: 相反放置    時間: 2025-3-23 15:21
第4樓
作者: Intersect    時間: 2025-3-23 18:35
5樓
作者: evanescent    時間: 2025-3-24 01:56
5樓
作者: BARB    時間: 2025-3-24 03:07
5樓
作者: Interdict    時間: 2025-3-24 09:16
5樓
作者: 追蹤    時間: 2025-3-24 13:13
6樓
作者: crumble    時間: 2025-3-24 16:38
6樓
作者: GEST    時間: 2025-3-24 20:28
6樓
作者: Acetaldehyde    時間: 2025-3-25 00:59
6樓
作者: MEET    時間: 2025-3-25 05:02
7樓
作者: Herpetologist    時間: 2025-3-25 11:16
7樓
作者: 調(diào)色板    時間: 2025-3-25 11:50
7樓
作者: Incise    時間: 2025-3-25 19:34
7樓
作者: Analogy    時間: 2025-3-25 20:02
8樓
作者: 暫時別動    時間: 2025-3-26 03:54
8樓
作者: nocturia    時間: 2025-3-26 05:56
8樓
作者: inundate    時間: 2025-3-26 10:58
8樓
作者: N防腐劑    時間: 2025-3-26 16:03
9樓
作者: LIMIT    時間: 2025-3-26 19:29
9樓
作者: 不能根除    時間: 2025-3-27 00:22
9樓
作者: Pudendal-Nerve    時間: 2025-3-27 03:39
9樓
作者: jettison    時間: 2025-3-27 07:02
10樓
作者: adequate-intake    時間: 2025-3-27 12:10
10樓
作者: 半導(dǎo)體    時間: 2025-3-27 14:37
10樓
作者: bile648    時間: 2025-3-27 18:47
10樓




歡迎光臨 派博傳思國際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
融水| 客服| 广州市| 东宁县| 九龙坡区| 方山县| 白河县| 禹州市| 安龙县| 黄龙县| 七台河市| 湛江市| 泸溪县| 南漳县| 开鲁县| 丹寨县| 长葛市| 阿鲁科尔沁旗| 崇义县| 简阳市| 密云县| 济宁市| 新巴尔虎右旗| 碌曲县| 湖南省| 宁晋县| 武邑县| 东乡县| 京山县| 黄梅县| 高青县| 堆龙德庆县| 平塘县| 南通市| 宁河县| 淮北市| 庆城县| 潞城市| 离岛区| 廉江市| 枣庄市|