派博傳思國(guó)際中心

標(biāo)題: Titlebook: Numerical Exploration of Fourier Transform and Fourier Series; The Power Spectrum o Sujaul Chowdhury,Abdullah Al Sakib Book 2024 The Editor [打印本頁(yè)]

作者: gingerly    時(shí)間: 2025-3-21 17:31
書目名稱Numerical Exploration of Fourier Transform and Fourier Series影響因子(影響力)




書目名稱Numerical Exploration of Fourier Transform and Fourier Series影響因子(影響力)學(xué)科排名




書目名稱Numerical Exploration of Fourier Transform and Fourier Series網(wǎng)絡(luò)公開度




書目名稱Numerical Exploration of Fourier Transform and Fourier Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Exploration of Fourier Transform and Fourier Series被引頻次




書目名稱Numerical Exploration of Fourier Transform and Fourier Series被引頻次學(xué)科排名




書目名稱Numerical Exploration of Fourier Transform and Fourier Series年度引用




書目名稱Numerical Exploration of Fourier Transform and Fourier Series年度引用學(xué)科排名




書目名稱Numerical Exploration of Fourier Transform and Fourier Series讀者反饋




書目名稱Numerical Exploration of Fourier Transform and Fourier Series讀者反饋學(xué)科排名





作者: Redundant    時(shí)間: 2025-3-21 21:33

作者: Etymology    時(shí)間: 2025-3-22 02:13

作者: choleretic    時(shí)間: 2025-3-22 06:17

作者: Wallow    時(shí)間: 2025-3-22 10:25
he results in influential papers by Sims and Granger...The book contains many worked-out examples, and many data-driven exercises. While intended primarily for graduate students and advanced undergraduates, practitioners will also find the book useful..978-3-319-98282-3Series ISSN 2192-4333 Series E-ISSN 2192-4341
作者: 使人入神    時(shí)間: 2025-3-22 13:03

作者: Hallowed    時(shí)間: 2025-3-22 19:39
Exploring Fourier Transform and Fourier Series Approximation Numerically,o obtain the frequencies that are present in the data numerically using what is called discrete Fourier transform. We also demonstrate how to numerically obtain Fourier series approximation to any function. Programs were written in Mathematica in this regard.
作者: 假裝是你    時(shí)間: 2025-3-23 00:19

作者: Gentry    時(shí)間: 2025-3-23 03:54
Motion and Power Spectrum of Driven Damped Oscillator: Analytical and Numerical Account,This chapter contains analytical and numerical solutions of differential equation of motion of driven damped oscillator using 4th order Runge-Kutta method. Data of the numerical solution are fed to a discrete Fourier transform program to obtain frequency content of the system. Programs were written in Mathematica to achieve these.
作者: 遺棄    時(shí)間: 2025-3-23 08:12
Motion of Driven Damped Oscillator in Phase Space,By numerically solving differential equation of motion using 4th order Runge–Kutta method, in this chapter, we have numerically plotted trajectories of simple harmonic oscillator, damped harmonic oscillator and driven damped harmonic oscillator in phase space.
作者: Crayon    時(shí)間: 2025-3-23 11:35

作者: overbearing    時(shí)間: 2025-3-23 16:38
978-3-031-34666-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: crucial    時(shí)間: 2025-3-23 21:39

作者: 商談    時(shí)間: 2025-3-23 22:56

作者: 季雨    時(shí)間: 2025-3-24 03:30

作者: BRAWL    時(shí)間: 2025-3-24 07:23

作者: 使更活躍    時(shí)間: 2025-3-24 12:39
6樓
作者: 詞匯    時(shí)間: 2025-3-24 18:37
6樓
作者: 有權(quán)威    時(shí)間: 2025-3-24 20:39
6樓
作者: 演繹    時(shí)間: 2025-3-25 02:27
6樓
作者: 組成    時(shí)間: 2025-3-25 03:31
7樓
作者: 分發(fā)    時(shí)間: 2025-3-25 07:48
7樓
作者: 宴會(huì)    時(shí)間: 2025-3-25 12:06
7樓
作者: Negligible    時(shí)間: 2025-3-25 17:22
7樓
作者: CLIFF    時(shí)間: 2025-3-25 22:25
8樓
作者: 協(xié)定    時(shí)間: 2025-3-26 03:00
8樓
作者: 安裝    時(shí)間: 2025-3-26 05:39
8樓
作者: 易彎曲    時(shí)間: 2025-3-26 10:46
8樓
作者: 就職    時(shí)間: 2025-3-26 16:04
9樓
作者: 凹室    時(shí)間: 2025-3-26 19:29
9樓
作者: 襲擊    時(shí)間: 2025-3-26 21:00
9樓
作者: 傾聽    時(shí)間: 2025-3-27 02:57
9樓
作者: 用不完    時(shí)間: 2025-3-27 07:33
10樓
作者: 取回    時(shí)間: 2025-3-27 11:56
10樓
作者: 使閉塞    時(shí)間: 2025-3-27 13:57
10樓
作者: Kindle    時(shí)間: 2025-3-27 21:36
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
双城市| 宁德市| 中山市| 城步| 伽师县| 津南区| 扶绥县| 阳新县| 普安县| 沅陵县| 休宁县| 孟连| 霍山县| 岳普湖县| 礼泉县| 锦州市| 礼泉县| 前郭尔| 东宁县| 丹巴县| 顺义区| 新泰市| 夹江县| 乃东县| 尚义县| 鹤峰县| 兰坪| 太原市| 三门峡市| 乌兰县| 辽阳市| 抚州市| 白朗县| 昭苏县| 嵊州市| 鹤山市| 临高县| 韶关市| 湖南省| 鞍山市| 慈溪市|