派博傳思國(guó)際中心

標(biāo)題: Titlebook: Noncommutative Algebraic Geometry and Representations of Quantized Algebras; Alexander L. Rosenberg Book 1995 Springer Science+Business Me [打印本頁(yè)]

作者: 海市蜃樓    時(shí)間: 2025-3-21 19:37
書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras影響因子(影響力)




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras影響因子(影響力)學(xué)科排名




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras網(wǎng)絡(luò)公開度




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras被引頻次




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras被引頻次學(xué)科排名




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras年度引用




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras年度引用學(xué)科排名




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras讀者反饋




書目名稱Noncommutative Algebraic Geometry and Representations of Quantized Algebras讀者反饋學(xué)科排名





作者: 煩憂    時(shí)間: 2025-3-21 22:23
Book 1995e book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose
作者: reception    時(shí)間: 2025-3-22 03:08

作者: Decrepit    時(shí)間: 2025-3-22 05:15
Noncommutative Local Algebra, to be excellent in commutative and graded-commutative geometries. But even the simplest non-affine spaces that come into view in the non(graded)commutative case — analogs of quasi-affine schemes and projective spectra — very rarely can be covered with open affine subschemes.
作者: coagulation    時(shí)間: 2025-3-22 11:04
978-90-481-4577-5Springer Science+Business Media Dordrecht 1995
作者: 減至最低    時(shí)間: 2025-3-22 14:26

作者: 柔美流暢    時(shí)間: 2025-3-22 17:14

作者: Discrete    時(shí)間: 2025-3-23 00:38

作者: 昆蟲    時(shí)間: 2025-3-23 03:18

作者: Indurate    時(shí)間: 2025-3-23 06:40
Noncommutative Local Algebra and Representations of certain rings of mathematical physics,The Weyl algebra is one of the most important objects in mathematical physics and representation theory of Lie groups and Kac-Moody algebras.
作者: sperse    時(shí)間: 2025-3-23 09:42

作者: Chandelier    時(shí)間: 2025-3-23 14:24
Noncommutative Local Algebra, to be excellent in commutative and graded-commutative geometries. But even the simplest non-affine spaces that come into view in the non(graded)commutative case — analogs of quasi-affine schemes and projective spectra — very rarely can be covered with open affine subschemes.
作者: 愛好    時(shí)間: 2025-3-23 21:37
Skew PBW monads and representations,. A skew PBW (Poincaré-Birkhoff-Witt) ring related to the map . is an associative ring .{.} which contains . as a subring and is a free right .-module with a basis {.. | . ∈ G} such that .. = ..(.).. for any . ∈ G and all . ∈ .. The symbol . stays for the multiplication table: .... = Σ... (. | .). W
作者: 愛得痛了    時(shí)間: 2025-3-24 00:48

作者: peak-flow    時(shí)間: 2025-3-24 03:54

作者: Simulate    時(shí)間: 2025-3-24 07:52

作者: 中古    時(shí)間: 2025-3-24 12:50
mples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern 978-90-481-4577-5978-94-015-8430-2
作者: exostosis    時(shí)間: 2025-3-24 18:31
Noncommutative Algebraic Geometry and Representations of Quantized Algebras
作者: corpus-callosum    時(shí)間: 2025-3-24 20:49

作者: Ovulation    時(shí)間: 2025-3-25 00:17
6樓
作者: famine    時(shí)間: 2025-3-25 06:48
6樓
作者: ordain    時(shí)間: 2025-3-25 07:30
6樓
作者: 貪婪的人    時(shí)間: 2025-3-25 14:17
6樓
作者: 創(chuàng)新    時(shí)間: 2025-3-25 17:55
7樓
作者: 包庇    時(shí)間: 2025-3-25 20:48
7樓
作者: 牌帶來(lái)    時(shí)間: 2025-3-26 01:03
7樓
作者: insincerity    時(shí)間: 2025-3-26 06:00
7樓
作者: uncertain    時(shí)間: 2025-3-26 11:38
8樓
作者: prostatitis    時(shí)間: 2025-3-26 12:39
8樓
作者: Eulogy    時(shí)間: 2025-3-26 17:57
8樓
作者: 熄滅    時(shí)間: 2025-3-27 00:14
8樓
作者: wall-stress    時(shí)間: 2025-3-27 03:03
9樓
作者: Herd-Immunity    時(shí)間: 2025-3-27 07:21
9樓
作者: 漂浮    時(shí)間: 2025-3-27 13:16
9樓
作者: Medicaid    時(shí)間: 2025-3-27 15:52
9樓
作者: leniency    時(shí)間: 2025-3-27 21:27
10樓
作者: 不在灌木叢中    時(shí)間: 2025-3-28 01:48
10樓
作者: 團(tuán)結(jié)    時(shí)間: 2025-3-28 03:33
10樓
作者: 很是迷惑    時(shí)間: 2025-3-28 09:09
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
名山县| 墨脱县| 宜昌市| 简阳市| 兴国县| 清徐县| 济南市| 虹口区| 霸州市| 绥阳县| 林甸县| 新竹县| 外汇| 华阴市| 普陀区| 桦甸市| 崇州市| 乌拉特后旗| 沂水县| 称多县| 瑞安市| 南川市| 乌拉特中旗| 墨江| 杭锦旗| 尉氏县| 开远市| 崇礼县| 商河县| 襄樊市| 梅州市| 雅江县| 察隅县| 三原县| 云林县| 河北区| 德化县| 巩义市| 荥阳市| 郯城县| 大余县|