派博傳思國(guó)際中心

標(biāo)題: Titlebook: Noncommutative Algebra; Benson Farb,R. Keith Dennis Textbook 1993 Springer Science+Business Media New York 1993 K-theory.algebra.commutati [打印本頁(yè)]

作者: 詞源法    時(shí)間: 2025-3-21 19:13
書(shū)目名稱(chēng)Noncommutative Algebra影響因子(影響力)




書(shū)目名稱(chēng)Noncommutative Algebra影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Algebra網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Noncommutative Algebra網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Algebra被引頻次




書(shū)目名稱(chēng)Noncommutative Algebra被引頻次學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Algebra年度引用




書(shū)目名稱(chēng)Noncommutative Algebra年度引用學(xué)科排名




書(shū)目名稱(chēng)Noncommutative Algebra讀者反饋




書(shū)目名稱(chēng)Noncommutative Algebra讀者反饋學(xué)科排名





作者: arrhythmic    時(shí)間: 2025-3-21 22:19
Semisimple Modules & Rings and the Wedderburn Structure Theoremis to express that object in terms of simpler, better understood pieces. For example, the Wedderburn Structure Theorem says that any semisimple ring (we’ll define this later) is isomorphic to a finite product of matrix rings over division rings, each of which is simple. The theory for semisimple mod
作者: DEFT    時(shí)間: 2025-3-22 00:52

作者: 鍍金    時(shí)間: 2025-3-22 05:56
The Brauer Groups Theorem shows that . and . are the only finite dimensional central division algebras over .. This kind of classification is optimal in the sense that we have an explicit, easy-to-understand list of all finite dimensional central division algebras over .. Classifying finite dimensional central divi
作者: Fallibility    時(shí)間: 2025-3-22 10:33

作者: 做方舟    時(shí)間: 2025-3-22 15:17
Burnside’s Theorem and Representations of Finite Groupsation theory of finite groups is a vast subject; in this chapter we’ll make a thin beeline right to a famous theorem of Burnside. For a more thorough introduction to the representation theory of finite groups, the reader may consult Serre, ., as well as Fulton and Harris, ..
作者: Carbon-Monoxide    時(shí)間: 2025-3-22 17:29
The Global Dimension of a Ringn Chapters 1 and 2 can be considered the zero’th step in the theory of global dimension. Kaplansky, based upon an observation of Schanuel, was the first to set down the dimension theory of rings in an elementary way, without using the powerful machinery of homological algebra. This section is based
作者: 圍裙    時(shí)間: 2025-3-22 23:43
The Brauer Group of a Commutative Ringroup coincides with the “classical” Brauer group (cf. Chapter 4) in the case when . is a field. One of the points of extending the theory to rings is that one can relate Brauer groups of fields to Brauer groups of related rings in exact sequences; one then hopes that this will help compute the class
作者: 道學(xué)氣    時(shí)間: 2025-3-23 02:17
Benson Farb,R. Keith Dennisahren das Bestreben besteht, z. B. den Wirkungsgrad der dampftechnischen und elektrischen Anlagen auf das h?chstm?gliche Ma? heraufzubringen, ist bis jetzt dem Wirkungsgrad der Anlagen in den Betrieben so gut wie keine Beachtung geschenkt worden. Es handelt sich hierbei um alle diejenigen industriel
作者: 允許    時(shí)間: 2025-3-23 09:04

作者: fibula    時(shí)間: 2025-3-23 09:58
Graduate Texts in Mathematicshttp://image.papertrans.cn/n/image/667186.jpg
作者: blithe    時(shí)間: 2025-3-23 17:51

作者: amenity    時(shí)間: 2025-3-23 19:46
978-1-4612-6936-6Springer Science+Business Media New York 1993
作者: 斑駁    時(shí)間: 2025-3-24 01:48

作者: 移動(dòng)    時(shí)間: 2025-3-24 05:40
The Jacobson RadicalIn Chapter One we developed a structure theory for semisimple rings, as summarized in Theorem 1.18. This theory used, for the most part, properties of modules over a semisimple ring in order to characterize such a ring. In this chapter, we give a more intrinsic characterization of semisimple rings.
作者: 克制    時(shí)間: 2025-3-24 06:33

作者: 率直    時(shí)間: 2025-3-24 10:58
The Global Dimension of a Ringn Chapters 1 and 2 can be considered the zero’th step in the theory of global dimension. Kaplansky, based upon an observation of Schanuel, was the first to set down the dimension theory of rings in an elementary way, without using the powerful machinery of homological algebra. This section is based on his Queen Mary College notes.
作者: 招人嫉妒    時(shí)間: 2025-3-24 15:11

作者: LIMN    時(shí)間: 2025-3-24 21:47

作者: compose    時(shí)間: 2025-3-25 00:52

作者: 傻瓜    時(shí)間: 2025-3-25 06:34
0072-5285 Five. We have tried not to leave any gaps on the paths to proving the main theorem- at most we ask the reader to fill in details for some of the sideline results; indeed this can be a fruitful way of solidifying one‘s understanding.978-1-4612-6936-6978-1-4612-0889-1Series ISSN 0072-5285 Series E-ISSN 2197-5612
作者: 名次后綴    時(shí)間: 2025-3-25 09:05

作者: 古老    時(shí)間: 2025-3-25 14:30

作者: 偏狂癥    時(shí)間: 2025-3-25 19:41

作者: 處理    時(shí)間: 2025-3-25 21:32
Central Simple Algebrastible with the module multiplication. Thus, these objects are algebras (for definitions and basic properties concerning algebras, see Chapter 0). We now wish to exploit this additional structure in order to learn more about these and other examples.
作者: arousal    時(shí)間: 2025-3-26 02:47

作者: synovial-joint    時(shí)間: 2025-3-26 07:00

作者: 不在灌木叢中    時(shí)間: 2025-3-26 08:51
The Brauer Group of a Commutative Ringical Brauer group. The Brauer group of a commutative ring is also part of a Galois theory of commutative rings. For more on these matters, the reader may consult . by Chase, Harrison and Rosenberg, . by Orzech and Small, . by DeMeyer and Ingraham, or the paper of Auslander and Goldman quoted above.
作者: 警告    時(shí)間: 2025-3-26 15:34

作者: 高歌    時(shí)間: 2025-3-26 18:34
8樓
作者: adulterant    時(shí)間: 2025-3-26 22:50
8樓
作者: 匯總    時(shí)間: 2025-3-27 05:12
8樓
作者: HEPA-filter    時(shí)間: 2025-3-27 07:27
8樓
作者: Melanoma    時(shí)間: 2025-3-27 12:23
9樓
作者: pacific    時(shí)間: 2025-3-27 16:47
9樓
作者: outset    時(shí)間: 2025-3-27 21:34
9樓
作者: Triglyceride    時(shí)間: 2025-3-28 01:24
9樓
作者: 綁架    時(shí)間: 2025-3-28 06:06
10樓
作者: Conflagration    時(shí)間: 2025-3-28 08:00
10樓
作者: STALL    時(shí)間: 2025-3-28 13:13
10樓
作者: 短程旅游    時(shí)間: 2025-3-28 16:37
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
贞丰县| 车致| 青冈县| 沙洋县| 莲花县| 永吉县| 馆陶县| 马尔康县| 邯郸市| 锡林郭勒盟| 米泉市| 信宜市| 周口市| 上虞市| 平罗县| 申扎县| 阳谷县| 龙川县| 遂宁市| 孝感市| 河北省| 万荣县| 县级市| 葵青区| 闵行区| 苗栗市| 囊谦县| 山阳县| 博乐市| 江陵县| 广安市| 双峰县| 永兴县| 合川市| 平湖市| 梓潼县| 绥芬河市| 灵寿县| 桂林市| 桐乡市| 浏阳市|