派博傳思國(guó)際中心

標(biāo)題: Titlebook: Manifolds all of whose Geodesics are Closed; Arthur L. Besse Book 1978 Springer-Verlag Berlin Heidelberg 1978 Geod?tische Linie.Manifolds. [打印本頁(yè)]

作者: 粘上    時(shí)間: 2025-3-21 18:58
書(shū)目名稱Manifolds all of whose Geodesics are Closed影響因子(影響力)




書(shū)目名稱Manifolds all of whose Geodesics are Closed影響因子(影響力)學(xué)科排名




書(shū)目名稱Manifolds all of whose Geodesics are Closed網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Manifolds all of whose Geodesics are Closed網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Manifolds all of whose Geodesics are Closed被引頻次




書(shū)目名稱Manifolds all of whose Geodesics are Closed被引頻次學(xué)科排名




書(shū)目名稱Manifolds all of whose Geodesics are Closed年度引用




書(shū)目名稱Manifolds all of whose Geodesics are Closed年度引用學(xué)科排名




書(shū)目名稱Manifolds all of whose Geodesics are Closed讀者反饋




書(shū)目名稱Manifolds all of whose Geodesics are Closed讀者反饋學(xué)科排名





作者: overshadow    時(shí)間: 2025-3-21 21:23
Sturm-Liouville Equations all of whose Solutions are Periodic, after F. Neuman,, in particular, that they depend on an almost arbitrary function)..In B.IV we come back to geometry and among the examples we previously exhibited select the once which we can describe geometrically. We establish an inequality for the integral of the curvature along geodesic. This gives a slightly
作者: 責(zé)難    時(shí)間: 2025-3-22 00:35
The Manifold of Geodesics,red in two ways over . and ., we prove A. Weinstein’s theorem..Then we discuss some Riemannian metrics which can be naturally defined on .., especially the metrics ?. and ?. which are respectively of Sobolev type . and .. We study in detail the geodesies of ?. together with its connection and curvature.
作者: 憂傷    時(shí)間: 2025-3-22 04:32

作者: 不自然    時(shí)間: 2025-3-22 09:43
The Spectrum of ,-Manifolds, in Section F)..In Section G we give a result of A. Weinstein which applies to the spectra of Zoll surfaces..Finally, in Section H we give some results on the first nonzero eigenvalue of the Laplace operator on Blaschke manifolds.
作者: archaeology    時(shí)間: 2025-3-22 16:09

作者: hemoglobin    時(shí)間: 2025-3-22 17:03
978-3-642-61878-9Springer-Verlag Berlin Heidelberg 1978
作者: Notify    時(shí)間: 2025-3-22 22:09
Overview: 978-3-642-61878-9978-3-642-61876-5
作者: 浪蕩子    時(shí)間: 2025-3-23 02:55

作者: Epithelium    時(shí)間: 2025-3-23 08:03

作者: 法律的瑕疵    時(shí)間: 2025-3-23 11:31

作者: 閑聊    時(shí)間: 2025-3-23 14:24
Harmonic Manifolds,Let . be a ROSS (see 3.16). The fact that its isometry group is transitive on . or on pairs of equidistant points implies that a lot of things do not really depend on . and . in . but only on the distance between them ?(.). We shall mainly consider two objects.
作者: venous-leak    時(shí)間: 2025-3-23 20:29
Foliations by Geodesic Circles,A.1. Let . be a .-manifold with a .-foliation by circles. We prove the following theorem of A.W. Wadsley [WY 2]:
作者: 顯而易見(jiàn)    時(shí)間: 2025-3-23 22:46

作者: offense    時(shí)間: 2025-3-24 05:56
,Blaschke Manifolds and Blaschke’s Conjecture,tance function and the notion of a segment; recall that segments are necessarily geodesies and locally unique. We define the cut-value and the cut-point of a geodesic. We recall the strict triangle inequality and the acute angle property. Finally we define what a manifold with spherical cut-locus is.
作者: 臆斷    時(shí)間: 2025-3-24 07:33
On the Topology of SC- and P-Manifolds,s of .-manifolds which are not isometric to a CROSS, the so-called Zoll manifolds. Observe, however, that the underlying differentiable manifold in these examples is the standard sphere. In this chapter we will prove that, at least topologically, the .-manifolds are not very different from CROSSes. The main result we prove is the following.
作者: GREG    時(shí)間: 2025-3-24 10:53
https://doi.org/10.1007/978-3-642-61876-5Geod?tische Linie; Manifolds; Riemannian geometry; Riemannian manifold; Riemannsche Mannigfaltigkeit; cur
作者: 準(zhǔn)則    時(shí)間: 2025-3-24 17:33

作者: 清晰    時(shí)間: 2025-3-24 19:50
Basic Facts about the Geodesic Flow,It only assumes a basic knowledge of differential geometry such as manifolds, differentiable maps, the tangent functor, exterior differential forms and the exterior differential, vector fields and the Lie derivative. Good references for this material are [AM], [GO 1], [SG], [WR 3]..It does not conta
作者: Fsh238    時(shí)間: 2025-3-24 23:44
The Manifold of Geodesics,the manifold of geodesies . for a .-manifold and we relate its tangent spaces to normal Jacobi fields. The existence of a nondegenerate closed two-form on .. is the most striking fact. This form endows the manifold with a symplectic structure. Using the fact that the unit tangent bundle of . is fibe
作者: 大火    時(shí)間: 2025-3-25 07:17

作者: judicial    時(shí)間: 2025-3-25 08:39
On the Topology of SC- and P-Manifolds,s of .-manifolds which are not isometric to a CROSS, the so-called Zoll manifolds. Observe, however, that the underlying differentiable manifold in these examples is the standard sphere. In this chapter we will prove that, at least topologically, the .-manifolds are not very different from CROSSes.
作者: Celiac-Plexus    時(shí)間: 2025-3-25 12:24

作者: 熄滅    時(shí)間: 2025-3-25 18:10
Sturm-Liouville Equations all of whose Solutions are Periodic, after F. Neuman, In the literature on differential equations there is a wide variety of books and monographs devoted to the Sturm-Liouville equation. We have selected [BA] as a reference since it inspired part of the work by F. Neuman..In B.II we analyze how a vector-valued Sturm-Liouville equation is associated wi
作者: 陰險(xiǎn)    時(shí)間: 2025-3-25 20:24

作者: angina-pectoris    時(shí)間: 2025-3-26 03:15
第4樓
作者: 外星人    時(shí)間: 2025-3-26 07:31
第4樓
作者: corpuscle    時(shí)間: 2025-3-26 09:28
5樓
作者: Reservation    時(shí)間: 2025-3-26 15:46
5樓
作者: 似少年    時(shí)間: 2025-3-26 19:28
5樓
作者: Yag-Capsulotomy    時(shí)間: 2025-3-26 23:33
5樓
作者: 中止    時(shí)間: 2025-3-27 02:42
6樓
作者: COKE    時(shí)間: 2025-3-27 07:06
6樓
作者: amorphous    時(shí)間: 2025-3-27 10:23
6樓
作者: 擁擠前    時(shí)間: 2025-3-27 14:21
6樓
作者: Chemotherapy    時(shí)間: 2025-3-27 17:56
7樓
作者: 臭了生氣    時(shí)間: 2025-3-27 22:41
7樓
作者: 密切關(guān)系    時(shí)間: 2025-3-28 02:41
7樓
作者: 螢火蟲(chóng)    時(shí)間: 2025-3-28 06:55
7樓
作者: 狼群    時(shí)間: 2025-3-28 14:19
8樓
作者: enhance    時(shí)間: 2025-3-28 17:08
8樓
作者: GLUE    時(shí)間: 2025-3-28 20:23
8樓
作者: commensurate    時(shí)間: 2025-3-29 01:25
8樓
作者: JAUNT    時(shí)間: 2025-3-29 03:13
9樓
作者: accrete    時(shí)間: 2025-3-29 09:16
9樓
作者: NAVEN    時(shí)間: 2025-3-29 15:20
9樓
作者: 偽證    時(shí)間: 2025-3-29 16:56
9樓
作者: dithiolethione    時(shí)間: 2025-3-29 22:22
10樓
作者: 中和    時(shí)間: 2025-3-30 00:21
10樓
作者: indubitable    時(shí)間: 2025-3-30 07:31
10樓
作者: Camouflage    時(shí)間: 2025-3-30 09:08
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
抚松县| 嘉鱼县| 大荔县| 武平县| 乐至县| 南和县| 原平市| 江川县| 黔南| 湘阴县| 南昌市| 石泉县| 三台县| 肥城市| 通许县| 磐石市| 芦山县| 三门县| 子洲县| 分宜县| 平塘县| 全南县| 长宁县| 凤城市| 莱阳市| 开远市| 威宁| 新竹市| 周口市| 桓仁| 鄂伦春自治旗| 北安市| 保康县| 乌什县| 四子王旗| 新郑市| 林芝县| 泰兴市| 建瓯市| 玉山县| 龙南县|