找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics and Finite Geometry; Steven T. Dougherty Textbook 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: GUST
21#
發(fā)表于 2025-3-25 03:35:59 | 只看該作者
https://doi.org/10.1007/978-981-16-6879-1This chapter describes a series of combinatorial objects including Hadamard matrices, Latin hypercubes, association schemes, and partially ordered sets. The algebraic and combinatorial properties of these objects are discussed.
22#
發(fā)表于 2025-3-25 08:25:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:13:03 | 只看該作者
24#
發(fā)表于 2025-3-25 19:53:15 | 只看該作者
Sèmévo Ida Tognisse,Jules DegilaThis chapter introduces a version of the well-known Tic-Tac-Toe game which can be played on designs and finite geometries. This game helps develop students’ geometric intuition. The theory of combinatorial games is applied to determine when the first player has a winning strategy and when the second player can force a draw.
25#
發(fā)表于 2025-3-25 23:54:15 | 只看該作者
https://doi.org/10.1007/978-981-19-2764-5Early in the text we encountered the following diagram.
26#
發(fā)表于 2025-3-26 00:15:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:29 | 只看該作者
28#
發(fā)表于 2025-3-26 11:47:20 | 只看該作者
Affine and Projective Planes,This chapter gives fundamental results on finite affine and projective planes. It provides detailed proofs on various counting results concerning these planes such as the number of points, lines, points on a line, and lines through a point. It describes the canonical relation between affine planes and mutually orthogonal Latin squares.
29#
發(fā)表于 2025-3-26 15:44:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:31:03 | 只看該作者
Higher Dimensional Finite Geometry,This chapter gives a basic introduction of linear algebra and uses this setting to describe higher dimensional affine and projective geometries. It includes proofs of the Bruck–Ryser theorem and Desargues’ theorem. It further describes Baer subplanes, arcs, and ovals. It concludes with a description of certain non-Desarguesian planes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤原县| 博湖县| 庆阳市| 吉首市| 浑源县| 怀安县| 龙口市| 铅山县| 分宜县| 大洼县| 卢龙县| 营山县| 竹北市| 汤阴县| 霍林郭勒市| 宁阳县| 延吉市| 类乌齐县| 田东县| 金川县| 定陶县| 井研县| 定州市| 娄底市| 萨嘎县| 江华| 南雄市| 乌什县| 通州市| 大邑县| 托里县| 西丰县| 三都| 溧阳市| 枣强县| 泰安市| 潜山县| 衡南县| 临邑县| 金华市| 岱山县|