派博傳思國際中心

標(biāo)題: Titlebook: Dynamical Aspects of Teichmüller Theory; SL(2,R)-Action on Mo Carlos Matheus Silva Santos Book 2018 Springer International Publishing AG, p [打印本頁]

作者: 紀(jì)念性    時間: 2025-3-21 16:19
書目名稱Dynamical Aspects of Teichmüller Theory影響因子(影響力)




書目名稱Dynamical Aspects of Teichmüller Theory影響因子(影響力)學(xué)科排名




書目名稱Dynamical Aspects of Teichmüller Theory網(wǎng)絡(luò)公開度




書目名稱Dynamical Aspects of Teichmüller Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamical Aspects of Teichmüller Theory被引頻次




書目名稱Dynamical Aspects of Teichmüller Theory被引頻次學(xué)科排名




書目名稱Dynamical Aspects of Teichmüller Theory年度引用




書目名稱Dynamical Aspects of Teichmüller Theory年度引用學(xué)科排名




書目名稱Dynamical Aspects of Teichmüller Theory讀者反饋




書目名稱Dynamical Aspects of Teichmüller Theory讀者反饋學(xué)科排名





作者: reflection    時間: 2025-3-21 21:09

作者: 猛擊    時間: 2025-3-22 02:28
Proof of the Eskin-Kontsevich-Zorich Regularity Conjecture,Lorenz gases is abnormal: more precisely, if . is the billiard flow in direction . in the billiard table ., ., obtained by putting rectangular obstacles of dimensions . at each ., then Hardy-Weber conjecture predicts that for Lebesgue almost every . and ..
作者: ingrate    時間: 2025-3-22 04:54
Gegenstand und Ziele der Untersuchung,This section serves as a general-purpose introduction to all other sections of this memoir. In particular, we’ll always assume familiarity with the content of this section in subsequent discussions.
作者: Melatonin    時間: 2025-3-22 09:11
Maschinenteile der Winden und Krane,Let . be a connected component of a stratum of the moduli space of unit area translation surfaces of genus ..
作者: Delectable    時間: 2025-3-22 13:11

作者: Delectable    時間: 2025-3-22 18:43
Maschinenteile der Winden und Krane,The circle of ideas developed for the study of Lyapunov exponents of the Kontsevich-Zorich cocycle over the .-action on moduli spaces of translation surfaces was fruitfully used in many contexts.
作者: 事物的方面    時間: 2025-3-22 22:12
Introduction,This section serves as a general-purpose introduction to all other sections of this memoir. In particular, we’ll always assume familiarity with the content of this section in subsequent discussions.
作者: 匍匐    時間: 2025-3-23 03:31

作者: incite    時間: 2025-3-23 08:20
,Some Finiteness Results for Algebraically Primitive Teichmüller Curves,Many applications of the dynamics of . on moduli spaces of translation surfaces to the investigation of translation flows and billiards rely on the features of the closure of certain .-orbits.
作者: Endemic    時間: 2025-3-23 10:52

作者: endarterectomy    時間: 2025-3-23 17:40

作者: 吊胃口    時間: 2025-3-23 20:23
Maschinenteile der Winden und Krane,Lorenz gases is abnormal: more precisely, if . is the billiard flow in direction . in the billiard table ., ., obtained by putting rectangular obstacles of dimensions . at each ., then Hardy-Weber conjecture predicts that for Lebesgue almost every . and ..
作者: Aerophagia    時間: 2025-3-23 23:41
Maschinenteile der Winden und Krane,Lorenz gases is abnormal: more precisely, if . is the billiard flow in direction . in the billiard table ., ., obtained by putting rectangular obstacles of dimensions . at each ., then Hardy-Weber conjecture predicts that for Lebesgue almost every . and ..
作者: Arthr-    時間: 2025-3-24 03:56
https://doi.org/10.1007/978-3-319-92159-4Teichmüller dynamics; moduli spaces; dynamical systems and geometry; flat surfaces; Eskin-Kontsevich-Zor
作者: Mumble    時間: 2025-3-24 10:18

作者: irritation    時間: 2025-3-24 11:45
Proof of the Eskin-Kontsevich-Zorich Regularity Conjecture,Lorenz gases is abnormal: more precisely, if . is the billiard flow in direction . in the billiard table ., ., obtained by putting rectangular obstacles of dimensions . at each ., then Hardy-Weber conjecture predicts that for Lebesgue almost every . and ..
作者: Accolade    時間: 2025-3-24 16:40

作者: Admire    時間: 2025-3-24 19:49

作者: interrogate    時間: 2025-3-25 02:52

作者: 宣誓書    時間: 2025-3-25 04:21

作者: 貨物    時間: 2025-3-25 11:19

作者: erythema    時間: 2025-3-25 15:07
7樓
作者: 楓樹    時間: 2025-3-25 16:29
7樓
作者: Adjourn    時間: 2025-3-25 21:50
7樓
作者: 刺耳    時間: 2025-3-26 01:48
7樓
作者: 不持續(xù)就爆    時間: 2025-3-26 07:00
8樓
作者: Cirrhosis    時間: 2025-3-26 10:52
8樓
作者: chiropractor    時間: 2025-3-26 15:49
8樓
作者: Fresco    時間: 2025-3-26 20:50
8樓
作者: TAIN    時間: 2025-3-27 00:00
9樓
作者: jocular    時間: 2025-3-27 02:46
9樓
作者: 小平面    時間: 2025-3-27 05:46
9樓
作者: 水汽    時間: 2025-3-27 12:30
9樓
作者: Altitude    時間: 2025-3-27 16:43
10樓
作者: 流利圓滑    時間: 2025-3-27 17:58
10樓
作者: doxazosin    時間: 2025-3-28 01:32
10樓
作者: menopause    時間: 2025-3-28 05:11
10樓




歡迎光臨 派博傳思國際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
常山县| 黑河市| 中超| 同德县| 靖江市| 潍坊市| 怀集县| 依兰县| 明星| 运城市| 玛纳斯县| 湖口县| 普陀区| 英超| 杨浦区| 广东省| 独山县| 定安县| 昌图县| 三台县| 丹东市| 中山市| 长春市| 福建省| 灵山县| 柏乡县| 潜山县| 新化县| 沙雅县| 靖安县| 武鸣县| 绥德县| 鸡东县| 类乌齐县| 北票市| 涿州市| 正宁县| 四平市| 凉山| 炉霍县| 沾益县|