派博傳思國(guó)際中心

標(biāo)題: Titlebook: CR Submanifolds of Kaehlerian and Sasakian Manifolds; Kentaro Yano,Masahiro Kon Book 1983 Springer Science+Business Media New York 1983 ma [打印本頁(yè)]

作者: 債務(wù)人    時(shí)間: 2025-3-21 18:32
書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds影響因子(影響力)




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds被引頻次




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds被引頻次學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用學(xué)科排名




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds讀者反饋




書(shū)目名稱(chēng)CR Submanifolds of Kaehlerian and Sasakian Manifolds讀者反饋學(xué)科排名





作者: 反對(duì)    時(shí)間: 2025-3-21 20:59

作者: reception    時(shí)間: 2025-3-22 01:04

作者: 看法等    時(shí)間: 2025-3-22 07:37
Hypersurfaces,Let M be a real (2n?1)-dimensional hypersurfce of a Kaehlerian manifold . of complex dimension n (real dimension 2n). Then M is obviously a generic submanifold of .. We denote by C a unit normal of M in . and put ..
作者: 開(kāi)頭    時(shí)間: 2025-3-22 09:14
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
作者: faculty    時(shí)間: 2025-3-22 16:54
https://doi.org/10.1007/1-4020-4878-5 of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.
作者: faculty    時(shí)間: 2025-3-22 17:21

作者: 6Applepolish    時(shí)間: 2025-3-22 22:29
978-1-4684-9426-6Springer Science+Business Media New York 1983
作者: 起波瀾    時(shí)間: 2025-3-23 05:07
Progress in Mathematicshttp://image.papertrans.cn/c/image/220550.jpg
作者: 充氣女    時(shí)間: 2025-3-23 05:46
CR Submanifolds of Kaehlerian and Sasakian Manifolds978-1-4684-9424-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: Anthropoid    時(shí)間: 2025-3-23 10:43

作者: Obloquy    時(shí)間: 2025-3-23 16:37
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
作者: Allure    時(shí)間: 2025-3-23 20:57
Structures on Riemannian Manifolds,ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
作者: Saline    時(shí)間: 2025-3-23 23:28

作者: FLAG    時(shí)間: 2025-3-24 05:15

作者: Anticonvulsants    時(shí)間: 2025-3-24 09:16
Submanifolds,he ambient manifold .to simplify the notation because it may cause no confusion. Let T(M) and T(M). denote the tangent and normal bundle of M respectively. The metric g and the connection .on .lead to invariant inner products and the connections on T(M) and T(M). We will define a connection on M explicitely.
作者: uncertain    時(shí)間: 2025-3-24 13:14

作者: Congestion    時(shí)間: 2025-3-24 17:55
Submanifolds, of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.
作者: innate    時(shí)間: 2025-3-24 21:19
6樓
作者: Aspiration    時(shí)間: 2025-3-25 00:57
6樓
作者: Collar    時(shí)間: 2025-3-25 07:22
6樓
作者: 無(wú)可爭(zhēng)辯    時(shí)間: 2025-3-25 07:51
7樓
作者: restrain    時(shí)間: 2025-3-25 13:20
7樓
作者: 領(lǐng)巾    時(shí)間: 2025-3-25 16:09
7樓
作者: 絕食    時(shí)間: 2025-3-25 22:39
7樓
作者: Geyser    時(shí)間: 2025-3-26 03:34
8樓
作者: 短程旅游    時(shí)間: 2025-3-26 05:33
8樓
作者: 生來(lái)    時(shí)間: 2025-3-26 11:44
8樓
作者: 一小塊    時(shí)間: 2025-3-26 14:51
9樓
作者: 協(xié)奏曲    時(shí)間: 2025-3-26 19:24
9樓
作者: 燈泡    時(shí)間: 2025-3-27 00:12
9樓
作者: POWER    時(shí)間: 2025-3-27 02:16
9樓
作者: 禍害隱伏    時(shí)間: 2025-3-27 08:27
10樓
作者: Hdl348    時(shí)間: 2025-3-27 11:27
10樓
作者: callous    時(shí)間: 2025-3-27 15:10
10樓
作者: 拋物線(xiàn)    時(shí)間: 2025-3-27 18:37
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
莎车县| 西畴县| 应用必备| 平舆县| 德化县| 娄底市| 民权县| 淳安县| 杭锦旗| 公主岭市| 六安市| 柳河县| 保定市| 开阳县| 江北区| 丹阳市| 喀什市| 邵阳市| 巴马| 井冈山市| 磐石市| 石棉县| 洮南市| 南安市| 孝感市| 涞源县| 梅河口市| 浦城县| 汪清县| 吴忠市| 河池市| 泾川县| 特克斯县| 上栗县| 柳江县| 西青区| 闸北区| 张家港市| 三台县| 古浪县| 繁峙县|