派博傳思國(guó)際中心

標(biāo)題: Titlebook: Applications of the Theory of Groups in Mechanics and Physics; Petre P. Teodorescu,Nicolae-Alexandru P. Nicorovic Book 2004 Springer Scien [打印本頁(yè)]

作者: BOUT    時(shí)間: 2025-3-21 17:49
書目名稱Applications of the Theory of Groups in Mechanics and Physics影響因子(影響力)




書目名稱Applications of the Theory of Groups in Mechanics and Physics影響因子(影響力)學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics網(wǎng)絡(luò)公開度




書目名稱Applications of the Theory of Groups in Mechanics and Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics被引頻次




書目名稱Applications of the Theory of Groups in Mechanics and Physics被引頻次學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics年度引用




書目名稱Applications of the Theory of Groups in Mechanics and Physics年度引用學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics讀者反饋




書目名稱Applications of the Theory of Groups in Mechanics and Physics讀者反饋學(xué)科排名





作者: 厚臉皮    時(shí)間: 2025-3-21 21:49

作者: Carbon-Monoxide    時(shí)間: 2025-3-22 01:04

作者: Mingle    時(shí)間: 2025-3-22 07:09

作者: CARE    時(shí)間: 2025-3-22 11:06

作者: hair-bulb    時(shí)間: 2025-3-22 13:43
Applications of the Theory of Groups in Mechanics and Physics978-1-4020-2047-6Series ISSN 0168-1222 Series E-ISSN 2365-6425
作者: infringe    時(shí)間: 2025-3-22 19:46

作者: 繼而發(fā)生    時(shí)間: 2025-3-22 23:40

作者: 昏睡中    時(shí)間: 2025-3-23 01:30

作者: RODE    時(shí)間: 2025-3-23 08:23
978-90-481-6581-0Springer Science+Business Media New York 2004
作者: 承認(rèn)    時(shí)間: 2025-3-23 13:22
S. Ukai,N. Oono,S. Ohtsuka,T. KaitoaaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHb3oNStNQ+fNoasaacH8srps% 0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr% 0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaci% GacaGaaeqabaWaaeaaeaqbaOqaaiaadge
作者: 阻止    時(shí)間: 2025-3-23 14:57
Xiancong Zhao,Hao Bai,Qi Shi,Zhancheng Guoinite dimensional ., denoted by .. This linear space becomes a . if we introduce a scalar product defined by the relation . where .Ω=sin. . . is the element of solid angle. The space . is complete, therefore it is also a.. To a rotation G of . there corresponds an operator T(G) acting in ., which is
作者: ARCHE    時(shí)間: 2025-3-23 20:08
Youliang He,Mehdi Sanjari,Erik J. Hilinskimulations. Then, we analyse in detail the symmetry properties of the basic equations in both formulations, and show a demonstration of Noether’s theorem and its reciprocal. Following these preliminaries, the main part of the chapter is dedicated to the study of the one-to-one correspondence between
作者: 籠子    時(shí)間: 2025-3-23 23:53
R. Gültekin,A. Rückert,H. Pfeifere to model the energy levels of the electron in a hydrogen atom. Later on, in its general form, Schr?dinger’s equation reached the same central importance to quantum mechanics as Newton’s laws of motion to classical mechanics.
作者: 亞麻制品    時(shí)間: 2025-3-24 03:30
0168-1222 vity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many oth
作者: Fibrillation    時(shí)間: 2025-3-24 10:11
Xiancong Zhao,Hao Bai,Qi Shi,Zhancheng Guolement of solid angle. The space . is complete, therefore it is also a.. To a rotation G of . there corresponds an operator T(G) acting in ., which is unitary, linear, and generates a representation of SO (3), defined by the formula
作者: 不透明    時(shí)間: 2025-3-24 12:27

作者: 隱藏    時(shí)間: 2025-3-24 15:33
Symmetry Groups of Differential Equations,lement of solid angle. The space . is complete, therefore it is also a.. To a rotation G of . there corresponds an operator T(G) acting in ., which is unitary, linear, and generates a representation of SO (3), defined by the formula
作者: Instrumental    時(shí)間: 2025-3-24 20:55

作者: Antagonism    時(shí)間: 2025-3-25 02:00
S. Ukai,N. Oono,S. Ohtsuka,T. Kaitox . is ., and if . = ?. then the matrix . is .. A square matrix . is called . or ., if . = . or . = ?., respectively. A square matrix . is called . if . = ., and . if . = .. Note that, a real and symmetric matrix is also Hermitian.
作者: 弄污    時(shí)間: 2025-3-25 06:37

作者: 自愛    時(shí)間: 2025-3-25 08:07

作者: Ascendancy    時(shí)間: 2025-3-25 12:06

作者: ALOFT    時(shí)間: 2025-3-25 18:02

作者: SLAG    時(shí)間: 2025-3-25 23:20
Applications in Mechanics,mulations. Then, we analyse in detail the symmetry properties of the basic equations in both formulations, and show a demonstration of Noether’s theorem and its reciprocal. Following these preliminaries, the main part of the chapter is dedicated to the study of the one-to-one correspondence between
作者: liposuction    時(shí)間: 2025-3-26 00:42
Applications in Quantum Mechanics and Physics of Elementary Particles,e to model the energy levels of the electron in a hydrogen atom. Later on, in its general form, Schr?dinger’s equation reached the same central importance to quantum mechanics as Newton’s laws of motion to classical mechanics.
作者: larder    時(shí)間: 2025-3-26 08:04
Book 2004y, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a p
作者: 蒸發(fā)    時(shí)間: 2025-3-26 10:06

作者: 眉毛    時(shí)間: 2025-3-26 16:38

作者: 放逐某人    時(shí)間: 2025-3-26 18:36

作者: 斜    時(shí)間: 2025-3-26 22:16
9樓
作者: 決定性    時(shí)間: 2025-3-27 01:16
9樓
作者: 背叛者    時(shí)間: 2025-3-27 08:20
9樓
作者: Foreknowledge    時(shí)間: 2025-3-27 11:22
10樓
作者: nullify    時(shí)間: 2025-3-27 16:59
10樓
作者: Gratulate    時(shí)間: 2025-3-27 19:42
10樓
作者: Canary    時(shí)間: 2025-3-27 22:40
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
大厂| 三都| 衡山县| 错那县| 贺兰县| 万全县| 贵定县| 乌兰县| 孟津县| 怀柔区| 屏山县| 松溪县| 平舆县| 千阳县| 松江区| 宜良县| 清流县| 台南县| 武陟县| 宁南县| 三江| 鱼台县| 澎湖县| 宝山区| 郑州市| 麟游县| 白朗县| 虎林市| 白银市| 平阴县| 鹿邑县| 唐河县| 深泽县| 禄劝| 景德镇市| 留坝县| 高邑县| 田林县| 柞水县| 东安县| 根河市|