派博傳思國(guó)際中心

標(biāo)題: Titlebook: Analytic Function Theory of Several Variables; Elements of Oka’s Co Junjiro Noguchi Textbook 2016 Springer Science+Business Media Singapore [打印本頁(yè)]

作者: GOLF    時(shí)間: 2025-3-21 19:31
書目名稱Analytic Function Theory of Several Variables影響因子(影響力)




書目名稱Analytic Function Theory of Several Variables影響因子(影響力)學(xué)科排名




書目名稱Analytic Function Theory of Several Variables網(wǎng)絡(luò)公開度




書目名稱Analytic Function Theory of Several Variables網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analytic Function Theory of Several Variables被引頻次




書目名稱Analytic Function Theory of Several Variables被引頻次學(xué)科排名




書目名稱Analytic Function Theory of Several Variables年度引用




書目名稱Analytic Function Theory of Several Variables年度引用學(xué)科排名




書目名稱Analytic Function Theory of Several Variables讀者反饋




書目名稱Analytic Function Theory of Several Variables讀者反饋學(xué)科排名





作者: 染色體    時(shí)間: 2025-3-21 23:05
Domains of Holomorphy,omain analytically extend over . (no Hartogs’ phenomenon happens at any boundary point). We first discuss the logarithmic convexity of Reinhardt domains, where every holomorphic function is expanded to a convergent power series. We prove that a domain is holomorphically convex if and only if it is a
作者: 講個(gè)故事逗他    時(shí)間: 2025-3-22 01:13
Analytic Sets and Complex Spaces,nce Theorem”, claiming the coherence of a geometric ideal sheaf (the ideal sheaf of an analytic set). By making use of it, the subset of singular points of an analytic set is proved to be an analytic subset of lower dimension. In the latter half, the notion of a complex space is introduced. Oka’s no
作者: GULP    時(shí)間: 2025-3-22 06:29

作者: 精致    時(shí)間: 2025-3-22 12:36
,Cohomology of Coherent Sheaves and Kodaira’s Embedding Theorem, topology in the space of sections of a coherent sheaf. As a consequence we will see that all cohomologies of a coherent sheaf over a compact complex space are finite dimensional (Cartan–Serre Theorem). Furthermore, we will extend Grauert’s Theorem?. for a general coherent sheaf. Then, as an applica
作者: GULF    時(shí)間: 2025-3-22 15:23
Correction to: Analytic Function Theory of Several Variables,
作者: EWER    時(shí)間: 2025-3-22 18:18
Erratum to: Analytic Function Theory of Several Variables,
作者: Blood-Clot    時(shí)間: 2025-3-23 00:05

作者: 生銹    時(shí)間: 2025-3-23 02:13

作者: acolyte    時(shí)間: 2025-3-23 09:36
Textbook 2016ter learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert‘s two volumes, GL227(236) (.Theory of Stein spaces.) and GL265 (.Coherent analytic sheaves.) with a lowering of the level for novice graduate students (
作者: Evocative    時(shí)間: 2025-3-23 12:27

作者: engrossed    時(shí)間: 2025-3-23 17:41
Reflecting on the Arts in Urban Schoolsts of an analytic set is proved to be an analytic subset of lower dimension. In the latter half, the notion of a complex space is introduced. Oka’s normalization theorem, which reduces a singular point to a normal one with better property, and “Oka’s Third Coherence Theorem” claiming the coherence of the normalization sheaf are proved.
作者: CHYME    時(shí)間: 2025-3-23 20:39

作者: Cubicle    時(shí)間: 2025-3-24 02:01

作者: covert    時(shí)間: 2025-3-24 04:59
,Cohomology of Coherent Sheaves and Kodaira’s Embedding Theorem,tween the theory of compact K?hler manifolds and that of complex projective algebraic varieties; it is nice to see such a theorem being naturally proved on the extended line of the theory of coherent sheaves.
作者: 高度表    時(shí)間: 2025-3-24 10:07

作者: allergy    時(shí)間: 2025-3-24 13:57

作者: 土產(chǎn)    時(shí)間: 2025-3-24 15:33

作者: 發(fā)酵劑    時(shí)間: 2025-3-24 19:51

作者: 爆炸    時(shí)間: 2025-3-25 00:50

作者: 散開    時(shí)間: 2025-3-25 06:46

作者: scrape    時(shí)間: 2025-3-25 10:32

作者: 單純    時(shí)間: 2025-3-25 12:30

作者: ANN    時(shí)間: 2025-3-25 18:46

作者: DEI    時(shí)間: 2025-3-25 23:54
Reflecting on the Arts in Urban SchoolsIn this chapter we prove the Oka–Cartan Fundamental Theorem on holomorphically convex domain . of .; that, is, it is proved that . (.) for every coherent sheaf . over holomorphically convex domains .. In the course of the proof, Oka’s J?ku-Ik? plays an essential role.
作者: inchoate    時(shí)間: 2025-3-26 04:11

作者: 賠償    時(shí)間: 2025-3-26 08:11

作者: negotiable    時(shí)間: 2025-3-26 10:28
,Holomorphically Convex Domains and the Oka–Cartan Fundamental Theorem,In this chapter we prove the Oka–Cartan Fundamental Theorem on holomorphically convex domain . of .; that, is, it is proved that . (.) for every coherent sheaf . over holomorphically convex domains .. In the course of the proof, Oka’s J?ku-Ik? plays an essential role.
作者: Keratectomy    時(shí)間: 2025-3-26 15:11

作者: 侵蝕    時(shí)間: 2025-3-26 19:54
https://doi.org/10.1007/978-981-10-0291-5Oka--Cartan’s fundamental theorem; Oka’s first coherence theorem; Oka’s theorem; Pseudoconvex domains; h
作者: Evocative    時(shí)間: 2025-3-26 22:09

作者: Notify    時(shí)間: 2025-3-27 04:05
Federica Fornaciari,Laine Goldmanenomenon, which is a special property in several variables caused by the increase in the number of variables from a single variable. We will see that the concept of “holomorphic convexity” arises naturally. In the last section, the notion of a sheaf will be introduced.
作者: Myelin    時(shí)間: 2025-3-27 07:24

作者: 解凍    時(shí)間: 2025-3-27 13:03

作者: 惡名聲    時(shí)間: 2025-3-27 16:38

作者: 得罪    時(shí)間: 2025-3-27 17:48

作者: Dictation    時(shí)間: 2025-3-27 22:58
7樓
作者: CUB    時(shí)間: 2025-3-28 03:53
8樓
作者: 流浪者    時(shí)間: 2025-3-28 06:54
8樓
作者: Perineum    時(shí)間: 2025-3-28 12:51
8樓
作者: Abduct    時(shí)間: 2025-3-28 18:35
8樓
作者: cipher    時(shí)間: 2025-3-28 21:39
9樓
作者: Obsequious    時(shí)間: 2025-3-28 23:43
9樓
作者: assent    時(shí)間: 2025-3-29 06:11
9樓
作者: 祖?zhèn)?nbsp;   時(shí)間: 2025-3-29 09:45
10樓
作者: LAPSE    時(shí)間: 2025-3-29 14:29
10樓
作者: 背景    時(shí)間: 2025-3-29 17:40
10樓
作者: 縮減了    時(shí)間: 2025-3-29 20:51
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
德惠市| 耿马| 二手房| 怀远县| 靖西县| 柳林县| 湾仔区| 抚顺县| 图木舒克市| 新绛县| 易门县| 庆安县| 海原县| 广丰县| 乌恰县| 儋州市| 汽车| 彩票| 株洲县| 双峰县| 蒲江县| 平武县| 崇仁县| 铜梁县| 贡觉县| 开原市| 太仆寺旗| 萝北县| 汕尾市| 万源市| 贺兰县| 临沂市| 辽阳县| 乐安县| 枣阳市| 瑞金市| 南阳市| 泽普县| 环江| 兴文县| 客服|