派博傳思國際中心

標題: Titlebook: Analysis on h-Harmonics and Dunkl Transforms; Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon [打印本頁]

作者: gratuity    時間: 2025-3-21 16:25
書目名稱Analysis on h-Harmonics and Dunkl Transforms影響因子(影響力)




書目名稱Analysis on h-Harmonics and Dunkl Transforms影響因子(影響力)學科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms網(wǎng)絡公開度




書目名稱Analysis on h-Harmonics and Dunkl Transforms網(wǎng)絡公開度學科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms被引頻次




書目名稱Analysis on h-Harmonics and Dunkl Transforms被引頻次學科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms年度引用




書目名稱Analysis on h-Harmonics and Dunkl Transforms年度引用學科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms讀者反饋




書目名稱Analysis on h-Harmonics and Dunkl Transforms讀者反饋學科排名





作者: 鐵砧    時間: 2025-3-21 22:21
2297-0304 sis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.978-3-0348-0886-6978-3-0348-0887-3Series ISSN 2297-0304 Series E-ISSN 2297-0312
作者: 材料等    時間: 2025-3-22 01:13

作者: 暫停,間歇    時間: 2025-3-22 07:36

作者: 散布    時間: 2025-3-22 12:05
https://doi.org/10.1007/3-7643-7674-0ernel of the spherical .-harmonics. This expression is an analog of the zonal harmonics, which suggests a definition of a convolution operator, defined in Section 3.3 and it helps us to study various summability methods for spherical .-harmonic expansions.
作者: Dysarthria    時間: 2025-3-22 15:03
Dunkl Operators Associated with Reflection Groups,mily of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertwining operator between the Dunkl operators and ordinary derivatives is discussed in Section 2.3.
作者: Simulate    時間: 2025-3-22 17:31

作者: 防水    時間: 2025-3-23 00:40
https://doi.org/10.1007/3-7643-7674-0he classical spherical harmonics and the Fourier transform, in which the underlying rotation group is replaced by a finite reflection group. This chapter serves as an introduction, in which we briefly recall classical results on the spherical harmonics and the Fourier transform. Since all results ar
作者: 輕浮女    時間: 2025-3-23 02:37
https://doi.org/10.1007/3-7643-7674-0ghted spaces, we start with the definition of a family of weight functions invariant under a reflection group in Section 2.1. Dunkl operators are a family of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertw
作者: 一條卷發(fā)    時間: 2025-3-23 05:42

作者: 600    時間: 2025-3-23 13:04
Zimbabwe: DDR by Trial and Error,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.
作者: lobster    時間: 2025-3-23 17:25

作者: FOLLY    時間: 2025-3-23 19:16
The Study of Defence Conversion since 1945,pansions on . and that of the Dunkl transform. This theorem is stated together with some related definitions and notations in Section 7.1. The proof of this transference theorem is, however, rather long, so we split it into three parts, which are given in the Sections 7.2, 7.3, and 7.4, respectively
作者: 有偏見    時間: 2025-3-24 00:20
https://doi.org/10.1007/978-3-0348-0887-3Dunkl transforms; h-harmonics; multiplier theorem; reflection groups
作者: ingrate    時間: 2025-3-24 03:43

作者: Feature    時間: 2025-3-24 07:58
Sharp Jackson and Sharp Marchaud Inequalities,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.
作者: 大罵    時間: 2025-3-24 13:46
Dunkl Transform,chapter we study the Dunkl transform from the point of view of harmonic analysis. In Section 6.1 we show that the Dunkl transform is an isometry in . space with respect to the measure . on . and it preserves Schwartz class of functions.
作者: considerable    時間: 2025-3-24 14:52

作者: paradigm    時間: 2025-3-24 20:42
Textbook 2015ms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.
作者: addict    時間: 2025-3-25 02:00

作者: SMART    時間: 2025-3-25 03:22
,Littlewood–Paley Theory and the Multiplier Theorem,The main result of this chapter is a Marcinkiewitcz multiplier theorem for .-harmonic expansions. Its proof uses general Littlewood–Paley theory for a symmetric diffusion semi-group. Several Littlewood–Paley type .-functions are introduced and studied via the Cesàro means for .-harmonic expansions.
作者: 粘土    時間: 2025-3-25 08:19
Feng Dai,Yuan Xu,Sergey TikhonovFocusses on the analysis side of h-harmonics and Dunkl transforms.Written in a concise yet informative style.No previous knowledge on reflection groups required
作者: NEX    時間: 2025-3-25 15:20
Advanced Courses in Mathematics - CRM Barcelonahttp://image.papertrans.cn/a/image/156479.jpg
作者: Omnipotent    時間: 2025-3-25 15:57

作者: oracle    時間: 2025-3-25 22:54

作者: 撤退    時間: 2025-3-26 00:52

作者: Keshan-disease    時間: 2025-3-26 05:40
https://doi.org/10.1007/978-1-349-11527-3chapter we study the Dunkl transform from the point of view of harmonic analysis. In Section 6.1 we show that the Dunkl transform is an isometry in . space with respect to the measure . on . and it preserves Schwartz class of functions.
作者: Ganglion    時間: 2025-3-26 09:49

作者: Lacunar-Stroke    時間: 2025-3-26 13:32

作者: 使無效    時間: 2025-3-26 18:14

作者: Limousine    時間: 2025-3-26 23:19

作者: 爭吵    時間: 2025-3-27 03:40
Sharp Jackson and Sharp Marchaud Inequalities,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.
作者: Small-Intestine    時間: 2025-3-27 06:55

作者: Lamina    時間: 2025-3-27 11:47

作者: Banister    時間: 2025-3-27 14:31
8樓
作者: Ossification    時間: 2025-3-27 20:36
8樓
作者: 可行    時間: 2025-3-27 23:56
9樓
作者: Common-Migraine    時間: 2025-3-28 04:35
9樓
作者: 吞噬    時間: 2025-3-28 10:13
9樓
作者: 群居男女    時間: 2025-3-28 13:15
10樓
作者: asthma    時間: 2025-3-28 17:01
10樓
作者: lobster    時間: 2025-3-28 18:50
10樓
作者: ILEUM    時間: 2025-3-28 23:16
10樓




歡迎光臨 派博傳思國際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
吉林省| 马尔康县| 宜丰县| 镇原县| 罗山县| 泸西县| 马鞍山市| 应用必备| 潞城市| 普兰县| 盈江县| 嵩明县| 塘沽区| 临泉县| 林甸县| 益阳市| 武陟县| 牡丹江市| 依安县| 寿宁县| 耒阳市| 乌拉特后旗| 松潘县| 乌拉特前旗| 紫金县| 望奎县| 天镇县| 乌拉特后旗| 化州市| 维西| 二连浩特市| 论坛| 百色市| 湖南省| 九龙城区| 望谟县| 望奎县| 建水县| 唐山市| 焦作市| 遵化市|