派博傳思國(guó)際中心

標(biāo)題: Titlebook: An Outline of Set Theory; James M. Henle Book 1986 Springer-Verlag New York Inc. 1986 Finite.calculus.cardinals.mathematics.ordinal.set th [打印本頁(yè)]

作者: Body-Mass-Index    時(shí)間: 2025-3-21 20:02
書(shū)目名稱An Outline of Set Theory影響因子(影響力)




書(shū)目名稱An Outline of Set Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱An Outline of Set Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱An Outline of Set Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱An Outline of Set Theory被引頻次




書(shū)目名稱An Outline of Set Theory被引頻次學(xué)科排名




書(shū)目名稱An Outline of Set Theory年度引用




書(shū)目名稱An Outline of Set Theory年度引用學(xué)科排名




書(shū)目名稱An Outline of Set Theory讀者反饋




書(shū)目名稱An Outline of Set Theory讀者反饋學(xué)科排名





作者: 軌道    時(shí)間: 2025-3-21 23:47
René K?nig Schriften. Ausgabe letzter Hand after Goodstein’s proof appeared, L. Kirby and J. Paris proved that the use of infinite sets is actually ..That is, this is a theorem of arithmetic that can’t be proved arithmetically, but . by using the extra powers of set theory!
作者: 波動(dòng)    時(shí)間: 2025-3-22 02:28

作者: 量被毀壞    時(shí)間: 2025-3-22 06:51

作者: tattle    時(shí)間: 2025-3-22 08:43

作者: acrimony    時(shí)間: 2025-3-22 14:06

作者: Orgasm    時(shí)間: 2025-3-22 20:38
Die Besiegelung des Einparteienstaateshow a few very important mathematical objects such as functions and relations can be formed from sets. Just as we have chosen to build mathematics using set theory, we will build set theory using logic.
作者: 牲畜欄    時(shí)間: 2025-3-22 21:51
Der Buchen-Hochwald sonst und jetzt,ubtraction problems: each representing a - b. That is how we arrived at the relation ~. and should represent the same number iff a ? b = c ? d. Since we can’t subtract in ?, we rewrite this as.
作者: 比賽用背帶    時(shí)間: 2025-3-23 03:08

作者: Cantankerous    時(shí)間: 2025-3-23 07:41

作者: 沒(méi)有準(zhǔn)備    時(shí)間: 2025-3-23 12:13

作者: Palatial    時(shí)間: 2025-3-23 15:59
René K?nig Schriften. Ausgabe letzter Handment that it is hard to believe it is true. Second, while the theorem is entirely about . integers, Goodstein’s proof uses . ordinals. Third, 37 years after Goodstein’s proof appeared, L. Kirby and J. Paris proved that the use of infinite sets is actually ..That is, this is a theorem of arithmetic t
作者: 色情    時(shí)間: 2025-3-23 21:14

作者: 原諒    時(shí)間: 2025-3-24 02:16
https://doi.org/10.1007/978-3-642-92382-1he subtraction problems themselves. Lacking division, we created ? out of the division problems. What do we lack now? Quite a few numbers really. We can’t take square roots, for example, but many other important numbers are missing.
作者: SEEK    時(shí)間: 2025-3-24 02:24
https://doi.org/10.1007/978-1-4613-8680-3Finite; calculus; cardinals; mathematics; ordinal; set theory; theorem
作者: Immunization    時(shí)間: 2025-3-24 09:12

作者: 字謎游戲    時(shí)間: 2025-3-24 13:11
Introductiond methods pervade mathematics. Set-theoretic results have shaken the worlds of analysis, algebra, and topology. Simple questions about sets have split the mathematical community into hostile camps, and the romance of its infinite sets have charmed and challenged philosophers as nothing else in mathematics.
作者: 推崇    時(shí)間: 2025-3-24 16:55
Logic and Set Theoryhow a few very important mathematical objects such as functions and relations can be formed from sets. Just as we have chosen to build mathematics using set theory, we will build set theory using logic.
作者: 焦慮    時(shí)間: 2025-3-24 20:51

作者: 有角    時(shí)間: 2025-3-25 00:12
The Real Numbershe subtraction problems themselves. Lacking division, we created ? out of the division problems. What do we lack now? Quite a few numbers really. We can’t take square roots, for example, but many other important numbers are missing.
作者: expository    時(shí)間: 2025-3-25 05:23
Aufrüstung und KriegsvorbereitungThe object of this chapter is to define a set to represent the numbers 0, 1, 2, .... To be complete, we must also show how to add and multiply these numbers and prove all the usual laws: commutative, associative, etc. The most important idea contained in our construction is that of mathematical induction.
作者: mechanical    時(shí)間: 2025-3-25 09:17

作者: brachial-plexus    時(shí)間: 2025-3-25 12:52
https://doi.org/10.1007/978-3-322-80854-7Our next goal is to construct the rational numbers. The method is very much like that of the previous chapter.
作者: 斗志    時(shí)間: 2025-3-25 16:14

作者: corn732    時(shí)間: 2025-3-25 20:26
Die Aufl?sung der naturalistischen ?sthetikWe wish to extend ?, our set of counting numbers, to a larger class of numbers we can use to count infinite sets. These will be our first type of infinite number, and they will be used to measure the “l(fā)engths” of large sets.
作者: Rodent    時(shí)間: 2025-3-26 00:48
https://doi.org/10.1007/978-3-658-27463-4We develop in this chapter a second set of infinite numbers to measure the . (as opposed to the . of infinite sets.
作者: LUT    時(shí)間: 2025-3-26 07:17

作者: 粘土    時(shí)間: 2025-3-26 11:26
René K?nig Schriften. Ausgabe letzter HandWe prove here Theorem 7.10 which offers three equivalent forms of the Axiom of Choice. We then use AC to construct a system of numbers called the Hyperreal numbers (??). This system extends ? as ? extended ? and ? extended ?. ?? contains both infinite numbers and infinitesimals.
作者: 帳單    時(shí)間: 2025-3-26 13:27
https://doi.org/10.1007/978-3-322-99013-6 # 13. 3.1. As you try to prove transitivity you will realize that you are missing an important fact about ?, a cancellation law:
作者: 感激小女    時(shí)間: 2025-3-26 20:44

作者: travail    時(shí)間: 2025-3-26 21:29
The Natural NumbersThe object of this chapter is to define a set to represent the numbers 0, 1, 2, .... To be complete, we must also show how to add and multiply these numbers and prove all the usual laws: commutative, associative, etc. The most important idea contained in our construction is that of mathematical induction.
作者: 嫌惡    時(shí)間: 2025-3-27 03:08
The IntegersIn this chapter we will construct a set to represent the positive and negative integers. As before, we will define addition and multiplication. In addition to the properties proved for ? , we will now have additive inverses. The key idea in our construction is the use of equivalence classes.
作者: 熱情贊揚(yáng)    時(shí)間: 2025-3-27 05:23
The RationalsOur next goal is to construct the rational numbers. The method is very much like that of the previous chapter.
作者: 相互影響    時(shí)間: 2025-3-27 09:51
The Real NumbersWe complete our construction of the standard number systems with Dedekind’s approach to the real numbers. For various reasons, there is a lot more work involved in this task, so we will limit ourselves to the definition of ?, +. and 0., and some examination of the difficulties of proceeding further.
作者: 松軟無(wú)力    時(shí)間: 2025-3-27 17:32
The OrdinalsWe wish to extend ?, our set of counting numbers, to a larger class of numbers we can use to count infinite sets. These will be our first type of infinite number, and they will be used to measure the “l(fā)engths” of large sets.
作者: Needlework    時(shí)間: 2025-3-27 20:44

作者: 種植,培養(yǎng)    時(shí)間: 2025-3-27 22:21
The UniverseWe now explore some pure set theory, examining the structure of the universe of sets. A crucial concept will be that of a set which in itself is a universe of sets, that is, all the axioms of ZF are true about the members of this set.
作者: Mets552    時(shí)間: 2025-3-28 03:45
Choice and InfinitesimalsWe prove here Theorem 7.10 which offers three equivalent forms of the Axiom of Choice. We then use AC to construct a system of numbers called the Hyperreal numbers (??). This system extends ? as ? extended ? and ? extended ?. ?? contains both infinite numbers and infinitesimals.
作者: GORGE    時(shí)間: 2025-3-28 07:29
The Integers # 13. 3.1. As you try to prove transitivity you will realize that you are missing an important fact about ?, a cancellation law:
作者: 走調(diào)    時(shí)間: 2025-3-28 13:13
The Ordinals # 24. We meet here yet another of the many faces of induction. Under ordinary circumstances the following principles (on any linearly ordered set) are the same:
作者: Munificent    時(shí)間: 2025-3-28 17:35

作者: doxazosin    時(shí)間: 2025-3-28 18:46

作者: 魯莽    時(shí)間: 2025-3-29 02:16

作者: promote    時(shí)間: 2025-3-29 03:25

作者: 兩種語(yǔ)言    時(shí)間: 2025-3-29 07:44
Logic and Set Theoryhow a few very important mathematical objects such as functions and relations can be formed from sets. Just as we have chosen to build mathematics using set theory, we will build set theory using logic.
作者: expeditious    時(shí)間: 2025-3-29 13:02
Goodstein’s Theoremment that it is hard to believe it is true. Second, while the theorem is entirely about . integers, Goodstein’s proof uses . ordinals. Third, 37 years after Goodstein’s proof appeared, L. Kirby and J. Paris proved that the use of infinite sets is actually ..That is, this is a theorem of arithmetic t
作者: 香料    時(shí)間: 2025-3-29 15:38

作者: outskirts    時(shí)間: 2025-3-29 22:33

作者: 無(wú)能性    時(shí)間: 2025-3-30 01:41
8樓
作者: 干涉    時(shí)間: 2025-3-30 07:05
8樓
作者: recession    時(shí)間: 2025-3-30 11:08
9樓
作者: mercenary    時(shí)間: 2025-3-30 15:33
9樓
作者: 朝圣者    時(shí)間: 2025-3-30 20:11
9樓
作者: NEEDY    時(shí)間: 2025-3-30 23:51
10樓
作者: 你不公正    時(shí)間: 2025-3-31 03:38
10樓
作者: 誘惑    時(shí)間: 2025-3-31 06:06
10樓
作者: Atmosphere    時(shí)間: 2025-3-31 11:14
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.yitongpaimai.cn/) Powered by Discuz! X3.5
增城市| 松滋市| 和平区| 杨浦区| 岳普湖县| 朝阳市| 禹城市| 永新县| 洞口县| 宁津县| 镇坪县| 塘沽区| 平远县| 扬中市| 张家口市| 体育| 浏阳市| 松滋市| 谢通门县| 巨野县| 那曲县| 新昌县| 中宁县| 恩平市| 定边县| 收藏| 新郑市| 百色市| 永平县| 安岳县| 壤塘县| 颍上县| 湘乡市| 霍林郭勒市| 昔阳县| 贵港市| 萨迦县| 社旗县| 桃园市| 丹东市| 莱西市|