找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Single-Facility Location Problems with Barriers; Kathrin Klamroth Textbook 2002 Springer-Verlag New York 2002 Optimization Theory.algorith

[復(fù)制鏈接]
樓主: GRASS
11#
發(fā)表于 2025-3-23 13:36:10 | 只看該作者
Textbook 2002ling. Areas where the placement of a new facility is forbidden, referred to as forbidden regions,canbeusedtomodel,forexample,protectedareasorregionswhere thegeographiccharacteristicsforbidtheconstructionofthedesiredfacility. Limitations on traveling are constituted by barrier regions or obstacles li
12#
發(fā)表于 2025-3-23 16:18:48 | 只看該作者
Shortest Paths in the Presence of BarriersThe problem of finding shortest paths in realistic environments plays an important role not only in location planning. Shortest-path problems in the presence of physical barriers arise, for example, in the planning of shortest water routes between different harbors or in the determination of an optimal path of a robot in an industrial plant.
13#
發(fā)表于 2025-3-23 18:08:16 | 只看該作者
Location Problems with Barriers: Basic Concepts and Literature ReviewIn the previous chapters we have dealt with the question of how best to define a distance between two fixed points in the .-dimensional real space ?. if constraints for traveling in the form of barriers are given. In this chapter we are free to choose one of these points in space, a ., as long as we do not interfere with the given barriers.
14#
發(fā)表于 2025-3-24 00:09:40 | 只看該作者
15#
發(fā)表于 2025-3-24 04:46:11 | 只看該作者
Location Problems with a Circular BarrierUp to now the advantages of polyhedral barriers have been exploited by using the extreme points of the barrier sets as reference points for related unconstrained location problems. In the case of nonpolyhedral barriers, a different approach will be needed.
16#
發(fā)表于 2025-3-24 06:37:31 | 只看該作者
Center Problems with the Manhattan MetricBased on the work Dearing et al. (2002), this chapter considers center problems with barriers.
17#
發(fā)表于 2025-3-24 11:36:27 | 只看該作者
18#
發(fā)表于 2025-3-24 17:19:09 | 只看該作者
https://doi.org/10.1007/b98843Optimization Theory; algorithms; global optimization; operations research; optimization
19#
發(fā)表于 2025-3-24 21:24:38 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟中县| 乌鲁木齐县| 九江市| 诸暨市| 灵川县| 共和县| 新化县| 额济纳旗| 太白县| 新源县| 贵南县| 赣榆县| 邮箱| 阳信县| 宜川县| 将乐县| 元谋县| 密云县| 宝丰县| 昌宁县| 左云县| 化州市| 吉隆县| 阳原县| 金溪县| 华亭县| 克什克腾旗| 尉犁县| 辽宁省| 志丹县| 三台县| 清涧县| 陕西省| 克拉玛依市| 星子县| 浮梁县| 夏邑县| 咸宁市| 海阳市| 乾安县| 彭泽县|