找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Approximation in Systems Engineering; Adhemar Bultheel,Patrick Dewilde Book 1983 Springer Science+Business Media New York 1983 ap

[復(fù)制鏈接]
樓主: subcutaneous
41#
發(fā)表于 2025-3-28 17:08:58 | 只看該作者
,Generalisations of Padé Approximants,lude multi-point approximants, approximants based upon differential equations, multivalued approximants, multivariate approximants, and approximants defined from series of orthogonal functions. The general class of Hermite-Padé approximants is discussed, and various applications are noted.
42#
發(fā)表于 2025-3-28 20:04:59 | 只看該作者
43#
發(fā)表于 2025-3-29 01:24:44 | 只看該作者
A Remark on the Numerics of Rational Approximation and the Rate of Convergence of Equally Spaced Inection to the generalized eigenvalue problem for symmetric Hankel matrices. By a classical example and some recent work it can be shown that interpolation with rational functions (even) on equidistant knots may lead to results that are superior to Chebyshev approximation by means of polynomials for comparable numerical work.
44#
發(fā)表于 2025-3-29 06:51:29 | 只看該作者
Contractive Intertwining Dilations and Norm Approximation Techniques,to describe the general solution of the Carathéodory-Fejér extrapolation problem. This turns out to be useful for some numerical problems such as: computation of the norm of an analytic Toeplitz matrix, an algorithm for detecting reflection coefficients in seismic exploration, and a model for controlling the errors in Wiener prediction.
45#
發(fā)表于 2025-3-29 09:32:11 | 只看該作者
46#
發(fā)表于 2025-3-29 13:43:26 | 只看該作者
Scattering Theory and Matrix Orthogonal Polynomials on the Real Line,x analog of the Jost function is introduced and its properties investigated. The matrix distribution function with respect to which the polynomials are orthonormal is constructed. The discrete matrix analog of the Marchenko equation is derived and used to obtain further results on the matrix Jost function and the distribution function.
47#
發(fā)表于 2025-3-29 18:06:38 | 只看該作者
48#
發(fā)表于 2025-3-29 19:58:48 | 只看該作者
Overview: 978-1-4899-6792-3978-1-4899-6790-9
49#
發(fā)表于 2025-3-30 03:44:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:40:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 22:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海宁市| 丁青县| 道真| 台北市| 通榆县| 宁陵县| 西城区| 双鸭山市| 全南县| 平山县| 云龙县| 大宁县| 鄂伦春自治旗| 军事| 宜黄县| 安达市| 黔南| 铜梁县| 海盐县| 高唐县| 北票市| 永德县| 龙门县| 江阴市| 武功县| 安图县| 吉木萨尔县| 滁州市| 大洼县| 罗定市| 收藏| 高密市| 吴桥县| 荔波县| 江城| 开封市| 南华县| 武乡县| 理塘县| 肃南| 扬中市|