找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Microlocal Analysis, Sharp Spectral Asymptotics and Applications V; Applications to Quan Victor Ivrii Book 2019 Springer Nature Switzerland

[復制鏈接]
樓主: stripper
21#
發(fā)表于 2025-3-25 05:52:00 | 只看該作者
22#
發(fā)表于 2025-3-25 10:58:18 | 只看該作者
23#
發(fā)表于 2025-3-25 12:06:42 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:26 | 只看該作者
The Case of External Magnetic FieldIn this Chapter we repeat analysis of the previous Chapter?. but in the case of the constant external magnetic field
25#
發(fā)表于 2025-3-25 22:55:19 | 只看該作者
26#
發(fā)表于 2025-3-26 01:15:44 | 只看該作者
The Case of Combined Magnetic FieldIn this Chapter instead of the Schr?dinger operator without magnetic field as in Chapter?., or with a constant magnetic field as in Chapter?., or with a self-generated magnetic field as in Chapter?
27#
發(fā)表于 2025-3-26 04:17:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:54:19 | 只看該作者
Spectral Asymptotics for Dirichlet to Neumann Operator in the Domains with EdgesWe consider eigenvalues of the Dirichlet-to-Neumann operator for Laplacian in the domain (or manifold) with edges and establish the asymptotics of the eigenvalue counting function . where . is dimension of the boundary. Further, in certain cases we establish two-term asymptotics . We also establish improved asymptotics for Riesz means.
29#
發(fā)表于 2025-3-26 12:45:58 | 只看該作者
30#
發(fā)表于 2025-3-26 16:57:39 | 只看該作者
Bethe-Sommerfeld Conjecture in Semiclassical SettingsUnder certain assumptions (including . we prove that the spectrum of a scalar operator in .covers interval ., where . is an elliptic operator and .(.,?.) is a periodic perturbation, ., .. .Further, we consider generalizations.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-17 01:35
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
霸州市| 沙坪坝区| 额尔古纳市| 金秀| 鄂托克旗| 丰都县| 城市| 花莲市| 萨嘎县| 太和县| 芜湖县| 渭南市| 兖州市| 龙里县| 海城市| 濮阳市| 铜川市| 莱州市| 米林县| 瓦房店市| 宣恩县| 富川| 福海县| 朝阳县| 普陀区| 增城市| 浪卡子县| 方城县| 廊坊市| 搜索| 松江区| 奎屯市| 体育| 大厂| 柳江县| 泾阳县| 安岳县| 东莞市| 楚雄市| 文山县| 富宁县|