找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science for Financial Econometrics; Nguyen Ngoc Thach,Vladik Kreinovich,Nguyen Duc Tru Book 2021 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 21883|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:47:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Data Science for Financial Econometrics
編輯Nguyen Ngoc Thach,Vladik Kreinovich,Nguyen Duc Tru
視頻videohttp://file.papertrans.cn/264/263118/263118.mp4
概述Presents recent findings and ideas on applying data science techniques to economic phenomena – and, in particular, financial phenomena.Inspires practitioners to learn how to apply various data science
叢書(shū)名稱(chēng)Studies in Computational Intelligence
圖書(shū)封面Titlebook: Data Science for Financial Econometrics;  Nguyen Ngoc Thach,Vladik Kreinovich,Nguyen Duc Tru Book 2021 The Editor(s) (if applicable) and Th
描述.This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.??.
出版日期Book 2021
關(guān)鍵詞Computational Intelligence; Intelligent Systems; Econometrics; Data Science; Probabilistic Methods; Econo
版次1
doihttps://doi.org/10.1007/978-3-030-48853-6
isbn_softcover978-3-030-48855-0
isbn_ebook978-3-030-48853-6Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Data Science for Financial Econometrics影響因子(影響力)




書(shū)目名稱(chēng)Data Science for Financial Econometrics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Data Science for Financial Econometrics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics被引頻次




書(shū)目名稱(chēng)Data Science for Financial Econometrics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics年度引用




書(shū)目名稱(chēng)Data Science for Financial Econometrics年度引用學(xué)科排名




書(shū)目名稱(chēng)Data Science for Financial Econometrics讀者反饋




書(shū)目名稱(chēng)Data Science for Financial Econometrics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:36 | 只看該作者
A QP Framework: A Contextual Representation of Agents’ Preferences in Investment Choicedescription of their vacillating ambiguity perception characterized by non-additive beliefs of agents. Some of the implications of non-classicality in beliefs for the composite market outcomes can also be modelled with the aid of QP. As a final step we also discuss the contributions of the growing b
板凳
發(fā)表于 2025-3-22 04:27:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:42 | 只看該作者
5#
發(fā)表于 2025-3-22 08:49:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:51:45 | 只看該作者
7#
發(fā)表于 2025-3-22 19:09:03 | 只看該作者
Impacts of Internal and External Macroeconomic Factors on Firm Stock Price in an Expansion Econometr
8#
發(fā)表于 2025-3-23 00:23:39 | 只看該作者
Andreas Richter,J?rg Stiller,Roger Grundmannwe explain the empirical success of these methods by showing that they are the only ones which are invariant with respect to natural transformations—like scaling which corresponds to selecting a different measuring?unit.
9#
發(fā)表于 2025-3-23 04:16:59 | 只看該作者
Alexey N. Volkov,Gerard M. O’Connorce in support of the selected model: weak, strong, very strong, or decisive. The corresponding strength levels are based on a heuristic scale proposed by Harold Jeffreys, one of the pioneers of the Bayes approach to statistics. In this paper, we propose a justification for this scale.
10#
發(fā)表于 2025-3-23 08:18:47 | 只看該作者
M. Hafez,K. Morinishi,J. Periauxs were not operating at an optimal scale or even close to optimal scale. The results also indicated that the number of employees input was used excessively in the sample MFIs. The findings of the present study would be useful for policymakers in improving the current levels of technical and scale efficiencies of MFIs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 和田市| 集贤县| 桦南县| 武威市| 红安县| 清苑县| 丘北县| 育儿| 兴义市| 莒南县| 务川| 穆棱市| 鄂州市| 皮山县| 梓潼县| 饶平县| 旬邑县| 马龙县| 榆社县| 苍南县| 黄平县| 大关县| 凤山市| 定兴县| 牟定县| 和田县| 高要市| 荣昌县| 凤山市| 台江县| 女性| 临泉县| 拜城县| 偏关县| 十堰市| 鄯善县| 静乐县| 彰武县| 内江市| 伊宁市|