找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Integration in the Life Sciences; 7th International Co Patrick Lambrix,Graham Kemp Conference proceedings 2010 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
41#
發(fā)表于 2025-3-28 17:19:32 | 只看該作者
42#
發(fā)表于 2025-3-28 21:04:17 | 只看該作者
https://doi.org/10.1007/978-3-658-20967-4tained output pages of the related data sources, by query probing using . identified input instances. Then, using a hierarchical representation of schemas and by applying clustering techniques, we are able to generate schema matches. We show the effectiveness of our technique while integrating 24 query interfaces.
43#
發(fā)表于 2025-3-28 23:16:38 | 只看該作者
Christian Dremel,Matthias Herteriching, or at least minimizing the manual effort required during, creation of quantitative models from qualitative models and experimental data. Automating the process makes model construction more systematic, supports good practice at all stages in the pipeline, and allows timely integration of high throughput experimental results into models.
44#
發(fā)表于 2025-3-29 07:01:56 | 只看該作者
45#
發(fā)表于 2025-3-29 07:35:36 | 只看該作者
46#
發(fā)表于 2025-3-29 11:38:01 | 只看該作者
Discovering Evolving Regions in Life Science Ontologiesns impossible. We therefore propose an approach to automatically discover evolving or stable ontology regions. We evaluate the approach by studying evolving regions in the Gene Ontology and the NCI Thesaurus.
47#
發(fā)表于 2025-3-29 15:47:50 | 只看該作者
On Matching Large Life Science Ontologies in Paralleld intra-matcher parallelism as well as the parallel execution of element- and structure-level matching. We implemented a distributed infrastructure for parallel ontology matching and evaluate different approaches for parallel matching of large life science ontologies in the field of anatomy and molecular biology.
48#
發(fā)表于 2025-3-29 20:57:52 | 只看該作者
49#
發(fā)表于 2025-3-30 00:15:28 | 只看該作者
Instance Discovery and Schema Matching with Applications to Biological Deep Web Data Integrationtained output pages of the related data sources, by query probing using . identified input instances. Then, using a hierarchical representation of schemas and by applying clustering techniques, we are able to generate schema matches. We show the effectiveness of our technique while integrating 24 query interfaces.
50#
發(fā)表于 2025-3-30 04:36:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 09:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白城市| 涞源县| 六盘水市| 育儿| 鄂托克前旗| 安陆市| 大同县| 灵石县| 鸡西市| 钟山县| 余姚市| 溧水县| 大关县| 荣成市| 开平市| 金坛市| 桑植县| 敦化市| 灌阳县| 宁陵县| 印江| 开阳县| 毕节市| 得荣县| 枣强县| 那曲县| 呼玛县| 隆子县| 鄂托克前旗| 杨浦区| 黔江区| 靖边县| 昌平区| 北流市| 庐江县| 宜章县| 梧州市| 阜康市| 舒兰市| 靖西县| 兴业县|