找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[復(fù)制鏈接]
樓主: 貧血
31#
發(fā)表于 2025-3-26 22:15:05 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:25 | 只看該作者
Doug Easterling,Howard Kunreutherrmulations. On our dataset composed of 350 artistic and 500 daily photographs, we achieve a 89.5% classification accuracy in cross-validated tests, and the assessment model assigns reasonable numerical scores based on portraits’ aesthetic quality in lighting.
33#
發(fā)表于 2025-3-27 08:10:29 | 只看該作者
The Dilemmas of Brief Psychotherapyework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
34#
發(fā)表于 2025-3-27 10:56:37 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8ication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
35#
發(fā)表于 2025-3-27 14:27:49 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
36#
發(fā)表于 2025-3-27 20:26:13 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:36 | 只看該作者
38#
發(fā)表于 2025-3-28 03:59:22 | 只看該作者
Max-Margin Dictionary Learning for Multiclass Image Categorizationework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
39#
發(fā)表于 2025-3-28 08:17:55 | 只看該作者
Weakly Supervised Classification of Objects in Images Using Soft Random Forestsication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
40#
發(fā)表于 2025-3-28 11:59:35 | 只看該作者
Adapting Visual Category Models to New Domains, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃北| 昌黎县| 桐庐县| 兴化市| 东平县| 霍城县| 青铜峡市| 永新县| 九江市| 从化市| 南投县| 浮山县| 耿马| 莱西市| 庆云县| 五大连池市| 余江县| 宜宾县| 西吉县| 安多县| 黄山市| 泽普县| 梁平县| 大洼县| 遵义县| 霍林郭勒市| 商丘市| 前郭尔| 合山市| 固原市| 西城区| 临澧县| 陇西县| 儋州市| 苍梧县| 吕梁市| 营口市| 桐梓县| 九寨沟县| 三明市| 宁晋县|